{ "id": "0811.3551", "version": "v1", "published": "2008-11-21T14:40:26.000Z", "updated": "2008-11-21T14:40:26.000Z", "title": "A Note on Coincidence Isometries of Modules in Euclidean Space", "authors": [ "Christian Huck" ], "comment": "8 pages", "journal": "Z. Kristallogr. 224 (2009), 341-344", "doi": "10.1524/zkri.2009.1148", "categories": [ "math.MG" ], "abstract": "It is shown that the coincidence isometries of certain modules in Euclidean $n$-space can be decomposed into a product of at most $n$ coincidence reflections defined by their non-zero elements. This generalizes previous results obtained for lattices to situations that are relevant in quasicrystallography.", "revisions": [ { "version": "v1", "updated": "2008-11-21T14:40:26.000Z" } ], "analyses": { "subjects": [ "52C07", "52C23", "11H06", "11R04" ], "keywords": [ "coincidence isometries", "euclidean space", "non-zero elements", "quasicrystallography", "generalizes" ], "tags": [ "journal article" ], "publication": { "journal": "Zeitschrift fur Kristallographie", "year": 2009, "month": "Jul", "volume": 224, "number": 7, "pages": 341 }, "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009ZK....224..341H" } } }