{ "id": "0811.3087", "version": "v1", "published": "2008-11-19T11:24:56.000Z", "updated": "2008-11-19T11:24:56.000Z", "title": "L^p-summability of Riesz means for the sublaplacian on complex spheres", "authors": [ "Valentina Casarino", "Marco M. Peloso" ], "comment": "Rapporto interno Politecnico di Torino, Novembre 2008", "doi": "10.1112/jlms/jdq067", "categories": [ "math.FA" ], "abstract": "In this paper we study the L^p-convergence of the Riesz means for the sublaplacian on the sphere S^{2n-1} in the complex n-dimensional space C^n. We show that the Riesz means of order delta of a function f converge to f in L^p(S^{2n-1}) when delta>delta(p):=(2n-1)|1\\2-1\\p|. The index delta(p) improves the one found by Alexopoulos and Lohoue', $2n|1\\2-1\\p|$, and it coincides with the one found by Mauceri and, with different methods, by Mueller in the case of sublaplacian on the Heisenberg group.", "revisions": [ { "version": "v1", "updated": "2008-11-19T11:24:56.000Z" } ], "analyses": { "keywords": [ "riesz means", "complex spheres", "sublaplacian", "complex n-dimensional space", "order delta" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0811.3087C" } } }