{ "id": "0811.2766", "version": "v1", "published": "2008-11-17T18:11:37.000Z", "updated": "2008-11-17T18:11:37.000Z", "title": "Representations of the general linear groups which are irreducible over subgroups", "authors": [ "Alexander S. Kleshchev", "Pham Huu Tiep" ], "comment": "36 pages. Amer. J. Math., to appear", "categories": [ "math.RT", "math.GR" ], "abstract": "We classify all triples $(G,V,H)$ such that $SL_n(q)\\leq G\\leq GL_n(q)$, $V$ is a representation of $G$ of dimension greater than one over an algebraically closed field $\\FF$ of characteristic coprime to $q$, and $H$ is a proper subgroup of $G$ such that the restriction $V\\dar_{H}$ is irreducible. This problem is a natural part of the Aschbacher-Scott program on maximal subgroups of finite classical groups.", "revisions": [ { "version": "v1", "updated": "2008-11-17T18:11:37.000Z" } ], "analyses": { "subjects": [ "20C20", "20E28", "20G40" ], "keywords": [ "general linear groups", "representation", "irreducible", "dimension greater", "proper subgroup" ], "note": { "typesetting": "TeX", "pages": 36, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0811.2766K" } } }