{ "id": "0811.2407", "version": "v1", "published": "2008-11-14T19:24:19.000Z", "updated": "2008-11-14T19:24:19.000Z", "title": "Regularity of smooth curves in biprojective spaces", "authors": [ "Victor Lozovanu" ], "comment": "11 pages", "categories": [ "math.AG", "math.AC" ], "abstract": "Maclagan and Smith \\cite{MaclaganSmith} developed a multigraded version of Castelnuovo-Mumford regularity. Based on their definition we will prove in this paper that for a smooth curve $C\\subseteq \\P^a\\times\\P^b$ $(a, b\\geq 2)$ of bidegree $(d_1,d_2)$ with nondegenerate birational projections the ideal sheaf $\\mathcal{I}_{C|\\P^a\\times\\P^b}$ is $(d_2-b+1,d_1-a+1)$-regular. We also give an example showing that in some cases this bound is the best possible.", "revisions": [ { "version": "v1", "updated": "2008-11-14T19:24:19.000Z" } ], "analyses": { "subjects": [ "14H45", "14F05" ], "keywords": [ "smooth curve", "biprojective spaces", "nondegenerate birational projections", "castelnuovo-mumford regularity", "ideal sheaf" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0811.2407L" } } }