{ "id": "0811.1311", "version": "v2", "published": "2008-11-09T03:14:02.000Z", "updated": "2009-10-29T22:48:15.000Z", "title": "Squares in sumsets", "authors": [ "Hoi Nguyen", "Van Vu" ], "comment": "33 pages", "categories": [ "math.CO", "math.NT" ], "abstract": "A finite set $A$ of integers is square-sum-free if there is no subset of $A$ sums up to a square. In 1986, Erd\\H os posed the problem of determining the largest cardinality of a square-sum-free subset of $\\{1, ..., n \\}$. Answering this question, we show that this maximum cardinality is of order $n^{1/3+o(1)}$.", "revisions": [ { "version": "v2", "updated": "2009-10-29T22:48:15.000Z" } ], "analyses": { "keywords": [ "finite set", "largest cardinality", "square-sum-free subset", "maximum cardinality" ], "note": { "typesetting": "TeX", "pages": 33, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0811.1311N" } } }