{ "id": "0811.0042", "version": "v1", "published": "2008-10-31T23:03:52.000Z", "updated": "2008-10-31T23:03:52.000Z", "title": "Summation of Hyperharmonic Series", "authors": [ "István Mező" ], "comment": "10 pages", "categories": [ "math.CO" ], "abstract": "We shall show that the sum of the series formed by the so-called hyperharmonic numbers can be expressed in terms of the Riemann zeta function. More exactly, we give summation formula for the general hyperharmonic series.", "revisions": [ { "version": "v1", "updated": "2008-10-31T23:03:52.000Z" } ], "analyses": { "subjects": [ "11B83" ], "keywords": [ "riemann zeta function", "general hyperharmonic series", "hyperharmonic numbers", "summation formula" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0811.0042M" } } }