{ "id": "0810.5513", "version": "v1", "published": "2008-10-30T15:34:33.000Z", "updated": "2008-10-30T15:34:33.000Z", "title": "Alvis-Curtis duality, central characters, and real-valued characters", "authors": [ "C. Ryan Vinroot" ], "categories": [ "math.RT" ], "abstract": "We prove that Alvis-Curtis duality preserves the Frobenius-Schur indicators of characters of connected reductive groups of Lie type with connected center. This allows us to extend a result of D. Prasad which relates the Frobenius-Schur indicator of a regular real-valued character to its central character. We apply these results to compute the Frobenius-Schur indicators of certain real-valued, irreducible, Frobenius-invariant Deligne-Lusztig characters, and the Frobenius-Schur indicators of real-valued regular and semisimple characters of finite unitary groups.", "revisions": [ { "version": "v1", "updated": "2008-10-30T15:34:33.000Z" } ], "analyses": { "subjects": [ "20C33", "20G05" ], "keywords": [ "central character", "frobenius-schur indicator", "finite unitary groups", "alvis-curtis duality preserves", "frobenius-invariant deligne-lusztig characters" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0810.5513V" } } }