{ "id": "0810.5259", "version": "v1", "published": "2008-10-29T12:13:30.000Z", "updated": "2008-10-29T12:13:30.000Z", "title": "Degenerate p-Laplacian operators on H-type groups and applications to Hardy type inequalities", "authors": [ "Yongyang Jin", "Genkai Zhang" ], "comment": "Canadian Math. J., to appear", "categories": [ "math.AP", "math.CA" ], "abstract": "Let $\\mathbb G$ be a step-two nilpotent group of H-type with Lie algebra $\\mathfrak G=V\\oplus \\mathfrak t$. We define a class of vector fields $X=\\{X_j\\}$ on $\\mathbb G$ depending on a real parameter $k\\ge 1$, and we consider the corresponding $p$-Laplacian operator $L_{p,k} u= \\text{div}_X (|\\na_{X} u|^{p-2} \\na_X u)$. For $k=1$ the vector fields $X=\\{X_j\\}$ are the left invariant vector fields corresponding to an orthonormal basis of $V$, for $k=2$ and $\\mathbb G$ being the Heisenberg group they are introduced by Greiner \\cite{Greiner-cjm79}. In this paper we obtain the fundamental solution for the operator $L_{p,k}$ and as an application, we get a Hardy type inequality associated with $X$.", "revisions": [ { "version": "v1", "updated": "2008-10-29T12:13:30.000Z" } ], "analyses": { "keywords": [ "hardy type inequality", "degenerate p-laplacian operators", "h-type groups", "invariant vector fields corresponding", "application" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0810.5259J" } } }