{ "id": "0810.3881", "version": "v1", "published": "2008-10-21T17:40:02.000Z", "updated": "2008-10-21T17:40:02.000Z", "title": "Corrigendum to \"Approximation by C^{p}-smooth, Lipschitz functions on Banach spaces\" [J. Math. Anal. Appl., 315 (2006), 599-605]", "authors": [ "R. Fry" ], "journal": "Journal of Mathematical Analysis and Applications, Volume 348, Issue 1, 1 December 2008, Page 571", "categories": [ "math.FA" ], "abstract": "In this erratum, we recover the results from an earlier paper of the author's which contained a gap. Specifically, we prove that if X is a Banach space with an unconditional basis and admits a C^{p}-smooth, Lipschitz bump function, and Y is a convex subset of X, then any uniformly continuous function f: Y->R can be uniformly approximated by Lipschitz, C^{p}-smooth functions K:X->R. Also, if Z is any Banach space and f:X->Z is L-Lipschitz, then the approximates K:X->Z can be chosen CL-Lipschitz and C^{p}-smooth, for some constant C depending only on X.", "revisions": [ { "version": "v1", "updated": "2008-10-21T17:40:02.000Z" } ], "analyses": { "subjects": [ "46B20" ], "keywords": [ "banach space", "lipschitz functions", "corrigendum", "approximation", "lipschitz bump function" ], "tags": [ "journal article" ], "publication": { "doi": "10.1016/j.jmaa.2008.08.007", "journal": "Journal of Mathematical Analysis and Applications", "year": 2008, "month": "Dec", "volume": 348, "number": 1, "pages": 571 }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008JMAA..348..571F" } } }