{ "id": "0810.3425", "version": "v1", "published": "2008-10-19T21:24:51.000Z", "updated": "2008-10-19T21:24:51.000Z", "title": "On the sum of superoptimal singular values", "authors": [ "Alberto A. Condori" ], "comment": "24 pages", "journal": "Journal of Functional Analysis. Volume 257, Issue 3, 1 August 2009. Pages 659-682", "categories": [ "math.FA" ], "abstract": "We discuss the following extremal problem and its relevance to the sum of the so-called superoptimal singular values of a matrix function: Given an $m\\times n$ matrix function $\\Phi$ on the unit circle $\\mathbb{T}$, when is there a matrix function $\\Psi_{*}$ in the set $A_{k}^{n,m}$ such that \\int_{\\mathbb{T}}{\\rm trace}(\\Phi(\\zeta)\\Psi_{*}(\\zeta))dm(\\zeta)=\\sup_{\\Psi\\in A_{k}^{n,m}}|\\int_{\\mathbb{T}}{\\rm trace}(\\Phi(\\zeta)\\Psi(\\zeta))dm(\\zeta)|? The set $A_{k}^{n,m}$ is defined by A_{k}^{n,m}={\\Psi\\in H_{0}^{1}: \\|\\Psi\\|_{L^{1}}\\leq 1, {\\rm rank}\\Psi(\\zeta)\\leq k{a.e.}\\zeta\\in T}. We introduce Hankel-type operators on spaces of matrix functions and prove that this problem has a solution if and only if the corresponding Hankel-type operator has a maximizing vector. We also characterize the smallest number $k$ for which \\int_{\\mathbb{T}}{\\rm trace}(\\Phi(\\zeta)\\Psi(\\zeta))dm(\\zeta) equals the sum of all the superoptimal singular values of an admissible matrix function $\\Phi$ for some $\\Psi\\in A_{k}^{n,m}$. Moreover, we provide a representation of any such function $\\Psi$ when $\\Phi$ is an admissible very badly approximable unitary-valued $n\\times n$ matrix function.", "revisions": [ { "version": "v1", "updated": "2008-10-19T21:24:51.000Z" } ], "analyses": { "subjects": [ "47B35", "46E40", "47L20" ], "keywords": [ "superoptimal singular values", "admissible matrix function", "extremal problem", "unit circle", "smallest number" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0810.3425C" } } }