{ "id": "0810.3218", "version": "v4", "published": "2008-10-17T19:25:30.000Z", "updated": "2016-12-01T21:19:50.000Z", "title": "Precise estimates for the subelliptic heat kernel on H-type groups", "authors": [ "Nathaniel Eldredge" ], "comment": "35 pages. Identical to published version except that some typos are fixed here", "journal": "Journal de Math\\'ematiques Pures et Appliqu\\'ees 92 (2009), pp. 52-85", "doi": "10.1016/j.matpur.2009.04.011", "categories": [ "math.AP", "math.DG" ], "abstract": "We establish precise upper and lower bounds for the subelliptic heat kernel on nilpotent Lie groups $G$ of H-type. Specifically, we show that there exist positive constants $C_1$, $C_2$ and a polynomial correction function $Q_t$ on $G$ such that $$C_1 Q_t e^{-\\frac{d^2}{4t}} \\le p_t \\le C_2 Q_t e^{-\\frac{d^2}{4t}}$$ where $p_t$ is the heat kernel, and $d$ the Carnot-Carath\\'eodory distance on $G$. We also obtain similar bounds on the norm of its subelliptic gradient $|\\nabla p_t|$. Along the way, we record explicit formulas for the distance function $d$ and the subriemannian geodesics of H-type groups.", "revisions": [ { "version": "v3", "updated": "2014-06-24T22:39:58.000Z", "comment": "49 pages, no figures" }, { "version": "v4", "updated": "2016-12-01T21:19:50.000Z" } ], "analyses": { "subjects": [ "35H10", "53C17", "22E25", "58J99" ], "keywords": [ "subelliptic heat kernel", "h-type groups", "precise estimates", "polynomial correction function", "nilpotent lie groups" ], "tags": [ "journal article" ], "publication": { "publisher": "Elsevier" }, "note": { "typesetting": "TeX", "pages": 35, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0810.3218E" } } }