{ "id": "0810.2998", "version": "v3", "published": "2008-10-16T20:15:01.000Z", "updated": "2009-04-06T16:18:37.000Z", "title": "Magnetoelectric polarizability and axion electrodynamics in crystalline insulators", "authors": [ "Andrew M. Essin", "Joel E. Moore", "David Vanderbilt" ], "comment": "4 pages; minor changes resulting from a change in one reference", "journal": "Phys. Rev. Lett. 102, 146805 (2009)", "doi": "10.1103/PhysRevLett.102.146805", "categories": [ "cond-mat.mes-hall", "cond-mat.mtrl-sci" ], "abstract": "The orbital motion of electrons in a three-dimensional solid can generate a pseudoscalar magnetoelectric coupling $\\theta$, a fact we derive for the single-particle case using a recent theory of polarization in weakly inhomogeneous materials. This polarizability $\\theta$ is the same parameter that appears in the \"axion electrodynamics\" Lagrangian $\\Delta{\\cal L}_{EM} = (\\theta e^2 / 2 \\pi h) {\\bf E} \\cdot {\\bf B}$, which is known to describe the unusual magnetoelectric properties of the three-dimensional topological insulator ($\\theta=\\pi$). We compute $\\theta$ for a simple model that accesses the topological insulator and discuss its connection to the surface Hall conductivity. The orbital magnetoelectric polarizability can be generalized to the many-particle wavefunction and defines the 3D topological insulator, like the IQHE, in terms of a topological ground-state response function.", "revisions": [ { "version": "v3", "updated": "2009-04-06T16:18:37.000Z" } ], "analyses": { "subjects": [ "03.65.Vf", "85.75.-d", "75.80.+q", "73.20.At", "73.43.-f" ], "keywords": [ "axion electrodynamics", "crystalline insulators", "topological insulator", "unusual magnetoelectric properties", "surface hall conductivity" ], "tags": [ "journal article" ], "publication": { "publisher": "APS", "journal": "Phys. Rev. Lett." }, "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable", "inspire": 800084, "adsabs": "2008arXiv0810.2998E" } } }