{ "id": "0810.2260", "version": "v1", "published": "2008-10-13T16:15:31.000Z", "updated": "2008-10-13T16:15:31.000Z", "title": "Rational functions with real multipliers", "authors": [ "Alexandre Eremenko", "Sebastian van Strien" ], "comment": "16 pages 1 figure", "journal": "Trans. AMS, 363, 12 (2011) 6453-6463", "categories": [ "math.DS", "math.CV" ], "abstract": "Let f be a rational function such that the multipliers of all repelling periodic points are real. We prove that the Julia set of such a function belongs to a circle. Combining this with a result of Fatou we conclude that whenever J(f) belongs to a smooth curve, it also belongs to a circle. Then we discuss rational functions whose Julia sets belong to a circle.", "revisions": [ { "version": "v1", "updated": "2008-10-13T16:15:31.000Z" } ], "analyses": { "subjects": [ "37F10", "30D05" ], "keywords": [ "rational function", "real multipliers", "julia sets belong", "repelling periodic points", "function belongs" ], "tags": [ "journal article" ], "publication": { "publisher": "AMS", "journal": "Trans. Amer. Math. Soc." }, "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0810.2260E" } } }