{ "id": "0810.2156", "version": "v1", "published": "2008-10-13T05:27:15.000Z", "updated": "2008-10-13T05:27:15.000Z", "title": "Quantizations of modules of differential operators", "authors": [ "Charles H. Conley" ], "comment": "21 pages", "journal": "Contemp. Math. 490 (2009), 61-81", "categories": [ "math.RT" ], "abstract": "Fix a manifold M, and let V be an infinite dimensional Lie algebra of vector fields on M. Assume that V contains a finite dimensional semisimple maximal subalgebra A, the projective or conformal subalgebra. A projective or conformal quantization of a V-module of differential operators on M is a decomposition into irreducible A-modules. We survey recent results on projective quantizations and their applications to cohomology, geometric equivalences and symmetries of differential operator modules, and indecomposable modules.", "revisions": [ { "version": "v1", "updated": "2008-10-13T05:27:15.000Z" } ], "analyses": { "subjects": [ "17B66" ], "keywords": [ "quantization", "finite dimensional semisimple maximal subalgebra", "infinite dimensional lie algebra", "differential operator modules", "conformal subalgebra" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0810.2156C" } } }