{ "id": "0810.2020", "version": "v1", "published": "2008-10-11T11:42:47.000Z", "updated": "2008-10-11T11:42:47.000Z", "title": "Volume of Separable States for Arbitrary $N$-dimensional System", "authors": [ "Dong-Ling Deng", "Jing-Ling Chen" ], "comment": "3 pages", "categories": [ "quant-ph" ], "abstract": "In a celebrated paper ([Phys. Rev. A 58, 883 (1998)]), K. Zyczkowski, P. Horodecki, A. Sanpera,and M. Lewenstein proved for the frst time a very interesting theorem that the volume of separable quantum states is nonzero. Inspired by their ideas, we obtain a general analytical lower bound of the volume of separable states (VOSS) for arbitrary N-dimensional system. Our results give quite simple and computable suffcient conditions for separability. Moreover, for bipartite system, an upper bound of the VOSS is also presented.", "revisions": [ { "version": "v1", "updated": "2008-10-11T11:42:47.000Z" } ], "analyses": { "keywords": [ "separable states", "arbitrary n-dimensional system", "general analytical lower bound", "computable suffcient conditions", "quite simple" ], "note": { "typesetting": "TeX", "pages": 3, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0810.2020D" } } }