{ "id": "0810.0966", "version": "v1", "published": "2008-10-06T13:49:13.000Z", "updated": "2008-10-06T13:49:13.000Z", "title": "Algebraic Connectivity and Degree Sequences of Trees", "authors": [ "Tuerker Biyikoglu", "Josef Leydold" ], "comment": "8 pages", "categories": [ "math.CO", "math.SP" ], "abstract": "We investigate the structure of trees that have minimal algebraic connectivity among all trees with a given degree sequence. We show that such trees are caterpillars and that the vertex degrees are non-decreasing on every path on non-pendant vertices starting at the characteristic set of the Fiedler vector.", "revisions": [ { "version": "v1", "updated": "2008-10-06T13:49:13.000Z" } ], "analyses": { "subjects": [ "05C75", "05C05", "05C50" ], "keywords": [ "degree sequence", "minimal algebraic connectivity", "vertex degrees", "characteristic set", "fiedler vector" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0810.0966B" } } }