{ "id": "0810.0186", "version": "v1", "published": "2008-10-01T14:57:02.000Z", "updated": "2008-10-01T14:57:02.000Z", "title": "Finite groups of units and their composition factors in the integral group rings of the groups $\\text{PSL}(2,q)$", "authors": [ "Martin Hertweck", "Christian R. Höfert", "Wolfgang Kimmerle" ], "comment": "10 pages", "categories": [ "math.GR", "math.RA" ], "abstract": "Let $G$ denote the projective special linear group $\\text{PSL}(2,q)$, for a prime power $q$. It is shown that a finite 2-subgroup of the group $V(\\mathbb{Z}G)$ of augmentation 1 units in the integral group ring $\\mathbb{Z}G$ of $G$ is isomorphic to a subgroup of $G$. Furthermore, it is shown that a composition factor of a finite subgroup of $V(\\mathbb{Z}G)$ is isomorphic to a subgroup of $G$.", "revisions": [ { "version": "v1", "updated": "2008-10-01T14:57:02.000Z" } ], "analyses": { "subjects": [ "16S34", "16U60", "20C05" ], "keywords": [ "integral group ring", "composition factor", "finite groups", "projective special linear group", "isomorphic" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0810.0186H" } } }