{ "id": "0810.0174", "version": "v1", "published": "2008-10-01T14:33:26.000Z", "updated": "2008-10-01T14:33:26.000Z", "title": "Euler characteristic and quadrilaterals of normal surfaces", "authors": [ "Tejas Kalelkar" ], "comment": "7 pages, 1 figure", "journal": "Proceedings Mathematical Sciences, Indian Academy of Sciences, Volume 118, Number 2 / May, 2008, Pg 227-233", "doi": "10.1007/s12044-008-0015-7", "categories": [ "math.GT" ], "abstract": "Let $M$ be a compact 3-manifold with a triangulation $\\tau$. We give an inequality relating the Euler characteristic of a surface $F$ normally embedded in $M$ with the number of normal quadrilaterals in $F$. This gives a relation between a topological invariant of the surface and a quantity derived from its combinatorial description. Secondly, we obtain an inequality relating the number of normal triangles and normal quadrilaterals of $F$, that depends on the maximum number of tetrahedrons that share a vertex in $\\tau$.", "revisions": [ { "version": "v1", "updated": "2008-10-01T14:33:26.000Z" } ], "analyses": { "subjects": [ "57Q35", "57M99" ], "keywords": [ "euler characteristic", "normal surfaces", "normal quadrilaterals", "inequality relating", "combinatorial description" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0810.0174K" } } }