{ "id": "0810.0149", "version": "v2", "published": "2008-10-01T12:44:14.000Z", "updated": "2008-11-26T15:49:17.000Z", "title": "Bounds on the volume entropy and simplicial volume in Ricci curvature $L^p$ bounded from below", "authors": [ "E. Aubry" ], "categories": [ "math.DG" ], "abstract": "Let $(M,g)$ be a compact manifold with Ricci curvature almost bounded from below and $\\pi:\\bar{M}\\to M$ be a normal, Riemannian cover. We show that, for any nonnegative function $f$ on $M$, the means of $f\\o\\pi$ on the geodesic balls of $\\bar{M}$ are comparable to the mean of $f$ on $M$. Combined with logarithmic volume estimates, this implies bounds on several topological invariants (volume entropy, simplicial volume, first Betti number and presentations of the fundamental group) in Ricci curvature $L^p$-bounded from below.", "revisions": [ { "version": "v2", "updated": "2008-11-26T15:49:17.000Z" } ], "analyses": { "keywords": [ "ricci curvature", "simplicial volume", "volume entropy", "logarithmic volume estimates", "first betti number" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0810.0149A" } } }