{ "id": "0809.4965", "version": "v1", "published": "2008-09-29T13:32:54.000Z", "updated": "2008-09-29T13:32:54.000Z", "title": "Partial hyperbolicity far from homoclinic bifurcations", "authors": [ "Sylvain Crovisier" ], "categories": [ "math.DS" ], "abstract": "We prove that any diffeomorphism of a compact manifold can be C^1-approximated by a diffeomorphism which exhibits a homoclinic bifurcation (a homoclinic tangency or a heterodimensional cycle) or by a diffeomorphism which is partially hyperbolic (its chain-recurrent set splits into partially hyperbolic pieces whose centre bundles have dimensions less or equal to two). We also study in a more systematic way the central models introduced in arXiv:math/0605387.", "revisions": [ { "version": "v1", "updated": "2008-09-29T13:32:54.000Z" } ], "analyses": { "subjects": [ "37C05", "37C20", "37C29", "37C50", "37D25", "37D30" ], "keywords": [ "partial hyperbolicity far", "homoclinic bifurcation", "diffeomorphism", "chain-recurrent set splits", "compact manifold" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0809.4965C" } } }