{ "id": "0809.4528", "version": "v4", "published": "2008-09-26T07:12:20.000Z", "updated": "2009-12-22T16:59:17.000Z", "title": "Connection between Coulomb and harmonic oscillator potentials in relativistic quantum mechanics", "authors": [ "Bo Fu", "Fu-Lin Zhang", "Jing-Ling Chen" ], "comment": "8 pages", "categories": [ "quant-ph" ], "abstract": "The Levi-Civita transformation is applied in the two-dimensional (2D) Dirac and Klein-Gordon (KG) equations with equal external scalar and vector potentials. The Coulomb and harmonic oscillator problems are connected via the Levi-Civita transformation. These connections lead to an approach to solve the Coulomb problems using the results of the harmonic oscillator potential in the above-mentioned relativistic systems.", "revisions": [ { "version": "v4", "updated": "2009-12-22T16:59:17.000Z" } ], "analyses": { "keywords": [ "harmonic oscillator potential", "relativistic quantum mechanics", "connection", "levi-civita transformation", "harmonic oscillator problems" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0809.4528F" } } }