{ "id": "0809.4174", "version": "v1", "published": "2008-09-24T12:38:04.000Z", "updated": "2008-09-24T12:38:04.000Z", "title": "On the homogeneity of global minimizers for the Mumford-Shah functional when K is a smooth cone", "authors": [ "Antoine Lemenant" ], "comment": "28 pages", "categories": [ "math.AP", "math.SP" ], "abstract": "We show that if $(u,K)$ is a global minimizer for the Mumford-Shah functional in $R^N$, and if K is a smooth enough cone, then (modulo constants) u is a homogenous function of degree 1/2. We deduce some applications in $R^3$ as for instance that an angular sector cannot be the singular set of a global minimizer, that if $K$ is a half-plane then $u$ is the corresponding cracktip function of two variables, or that if K is a cone that meets $S^2$ with an union of $C^1$ curvilinear convex polygones, then it is a $P$, $Y$ or $T$.", "revisions": [ { "version": "v1", "updated": "2008-09-24T12:38:04.000Z" } ], "analyses": { "subjects": [ "49Q20", "49Q05", "35J25", "35P15" ], "keywords": [ "global minimizer", "mumford-shah functional", "smooth cone", "homogeneity", "curvilinear convex polygones" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0809.4174L" } } }