{ "id": "0809.3702", "version": "v1", "published": "2008-09-22T13:25:13.000Z", "updated": "2008-09-22T13:25:13.000Z", "title": "Some limit theorems for rescaled Wick powers", "authors": [ "Alberto Lanconelli" ], "comment": "13 pages", "categories": [ "math.PR" ], "abstract": "We establish the strong L2(P)-convergence of properly rescaled Wick powers as the power index tends to infinity. The explicit representation of such limit will also provide the convergence in distribution to normal and log-normal random variables. The proofs rely on some estimates for the L2(P)-norm of Wick products and on the properties of second quantization operators.", "revisions": [ { "version": "v1", "updated": "2008-09-22T13:25:13.000Z" } ], "analyses": { "subjects": [ "60H40", "60F25", "60H15" ], "keywords": [ "limit theorems", "second quantization operators", "power index tends", "log-normal random variables", "properly rescaled wick powers" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0809.3702L" } } }