{ "id": "0809.3568", "version": "v1", "published": "2008-09-21T10:01:24.000Z", "updated": "2008-09-21T10:01:24.000Z", "title": "Infinitesimal rigidity of a compact hyperbolic 4-orbifold with totally geodesic boundary", "authors": [ "Tarik Aougab", "Peter A. Storm" ], "comment": "9 pages", "categories": [ "math.GT" ], "abstract": "Kerckhoff and Storm conjectured that compact hyperbolic n-orbifolds with totally geodesic boundary are infinitesimally rigid when n>3. This paper verifies this conjecture for a specific example based on the 4-dimensional hyperbolic 120-cell.", "revisions": [ { "version": "v1", "updated": "2008-09-21T10:01:24.000Z" } ], "analyses": { "subjects": [ "22E40", "20F55", "20H10" ], "keywords": [ "totally geodesic boundary", "infinitesimal rigidity", "compact hyperbolic n-orbifolds", "paper verifies", "conjecture" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0809.3568A" } } }