{ "id": "0809.3127", "version": "v1", "published": "2008-09-18T12:00:41.000Z", "updated": "2008-09-18T12:00:41.000Z", "title": "On the norm of the Beurling-Ahlfors operator in several dimensions", "authors": [ "Tuomas Hytönen" ], "comment": "12 pages, submitted for publication", "categories": [ "math.CA", "math.PR" ], "abstract": "The Lp operator norm of the generalized Beurling-Ahlfors transformation in n variables is at most (n/2+1)(p-1) for p>2. This improves on earlier results in all dimensions n>2. The proof is based on the heat extension and relies at the bottom on Burkholder's sharp inequality for martingale transforms.", "revisions": [ { "version": "v1", "updated": "2008-09-18T12:00:41.000Z" } ], "analyses": { "subjects": [ "42B20", "60G46" ], "keywords": [ "beurling-ahlfors operator", "dimensions", "lp operator norm", "burkholders sharp inequality", "earlier results" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0809.3127H" } } }