{ "id": "0809.2958", "version": "v1", "published": "2008-09-17T16:32:18.000Z", "updated": "2008-09-17T16:32:18.000Z", "title": "Strong Law of Large Numbers for Fragmentation Processes", "authors": [ "S. C. Harris", "R. Knobloch", "A. E. Kyprianou" ], "categories": [ "math.PR" ], "abstract": "In the spirit of a classical results for Crump-Mode-Jagers processes, we prove a strong law of large numbers for homogenous fragmentation processes. Specifically, for self-similar fragmentation processes, including homogenous processes, we prove the almost sure convergence of an empirical measure associated with the stopping line corresponding to first fragments of size strictly smaller than $\\eta$ for $1\\geq \\eta >0$.", "revisions": [ { "version": "v1", "updated": "2008-09-17T16:32:18.000Z" } ], "analyses": { "subjects": [ "60J25", "60G09" ], "keywords": [ "large numbers", "strong law", "self-similar fragmentation processes", "homogenous fragmentation processes", "crump-mode-jagers processes" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0809.2958H" } } }