{ "id": "0809.2664", "version": "v1", "published": "2008-09-16T09:28:49.000Z", "updated": "2008-09-16T09:28:49.000Z", "title": "Balance laws with integrable unbounded sources", "authors": [ "Graziano Guerra", "Francesca Marcellini", "Veronika Schleper" ], "comment": "26 pages, 4 figures", "categories": [ "math.AP" ], "abstract": "We consider the Cauchy problem for a $n\\times n$ strictly hyperbolic system of balance laws $$ \\{{array}{c} u_t+f(u)_x=g(x,u), x \\in \\mathbb{R}, t>0 u(0,.)=u_o \\in L^1 \\cap BV(\\mathbb{R}; \\mathbb{R}^n), | \\lambda_i(u)| \\geq c > 0 {for all} i\\in \\{1,...,n\\}, \\|g(x,\\cdot)\\|_{\\mathbf{C}^2}\\leq \\tilde M(x) \\in L1, {array}. $$ each characteristic field being genuinely nonlinear or linearly degenerate. Assuming that the $\\mathbf{L}^1$ norm of $\\|g(x,\\cdot)\\|_{\\mathbf{C}^1}$ and $\\|u_o\\|_{BV(\\reali)}$ are small enough, we prove the existence and uniqueness of global entropy solutions of bounded total variation extending the result in [1] to unbounded (in $L^\\infty$) sources. Furthermore, we apply this result to the fluid flow in a pipe with discontinuous cross sectional area, showing existence and uniqueness of the underlying semigroup.", "revisions": [ { "version": "v1", "updated": "2008-09-16T09:28:49.000Z" } ], "analyses": { "subjects": [ "35L65", "35L45", "35L60" ], "keywords": [ "balance laws", "integrable unbounded sources", "discontinuous cross sectional area", "global entropy solutions", "strictly hyperbolic system" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0809.2664G" } } }