{ "id": "0809.2335", "version": "v5", "published": "2008-09-13T12:59:28.000Z", "updated": "2011-03-27T11:05:48.000Z", "title": "Infinite paths and cliques in random graphs", "authors": [ "A. Berarducci", "P. Majer", "M. Novaga" ], "comment": "18 pages", "categories": [ "math.PR", "math.CO" ], "abstract": "We study some percolation problems on the complete graph over $\\mathbf N$. In particular, we give sharp sufficient conditions for the existence of (finite or infinite) cliques and paths in a random subgraph. No specific assumption on the probability, such as independency, is made. The main tools are a topological version of Ramsey theory, exchangeability theory and elementary ergodic theory.", "revisions": [ { "version": "v5", "updated": "2011-03-27T11:05:48.000Z" } ], "analyses": { "keywords": [ "random graphs", "infinite paths", "elementary ergodic theory", "sharp sufficient conditions", "complete graph" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0809.2335B" } } }