{ "id": "0809.2206", "version": "v3", "published": "2008-09-12T12:57:53.000Z", "updated": "2008-11-17T08:49:27.000Z", "title": "Complete Positivity of Rieffel's Deformation Quantization by Actions of $\\mathbb{R}^d$", "authors": [ "Daniel Kaschek", "Nikolai Neumaier", "Stefan Waldmann" ], "comment": "17 pages. New (more precise) title and other minor changes. Final version", "categories": [ "math-ph", "astro-ph", "math.MP", "math.OA" ], "abstract": "In this paper we consider C*-algebraic deformations a la Rieffel and show that every state of the undeformed algebra can be deformed into a state of the deformed algebra in the sense of a continuous field of states. The construction is explicit and involves a convolution operator with a particular Gauss function.", "revisions": [ { "version": "v3", "updated": "2008-11-17T08:49:27.000Z" } ], "analyses": { "subjects": [ "53D55", "46L87", "81R60", "46L65" ], "keywords": [ "rieffels deformation quantization", "complete positivity", "gauss function", "convolution operator", "continuous field" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0809.2206K" } } }