{ "id": "0809.1604", "version": "v1", "published": "2008-09-09T16:48:13.000Z", "updated": "2008-09-09T16:48:13.000Z", "title": "A Simple Proof of a Conjecture of Simion", "authors": [ "Yi Wang" ], "comment": "4 pages", "journal": "J. Combin. Theory Ser. A 100 (2002), 399--402", "categories": [ "math.CO" ], "abstract": "Simion had a unimodality conjecture concerning the number of lattice paths in a rectangular grid with the Ferrers diagram of a partition removed. Hildebrand recently showed the stronger result that these numbers are log concave. Here we present a simple proof of Hildebrand's result.", "revisions": [ { "version": "v1", "updated": "2008-09-09T16:48:13.000Z" } ], "analyses": { "subjects": [ "05A17" ], "keywords": [ "simple proof", "log concave", "stronger result", "lattice paths", "ferrers diagram" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0809.1604W" } } }