{ "id": "0809.1546", "version": "v1", "published": "2008-09-09T14:47:46.000Z", "updated": "2008-09-09T14:47:46.000Z", "title": "On the Equicontinuity Region of Discrete Subgroups of PU(1,n)", "authors": [ "José Seade", "Angel Cano" ], "categories": [ "math.DS", "math.CV" ], "abstract": "Let $ G $ be a discrete subgroup of PU(1,n). Then $ G $ acts on $\\mathbb {P}^n_\\mathbb C$ preserving the unit ball $\\mathbb {H}^n_\\mathbb {C}$, where it acts by isometries with respect to the Bergman metric. In this work we determine the equicontinuty region $Eq(G)$ of $G$ in $\\mathbb P^n_{\\mathbb C}$: It is the complement of the union of all complex projective hyperplanes in $\\mathbb {P}^n_{\\mathbb C}$ which are tangent to $\\partial \\mathbb {H}^n_\\mathbb {C}$ at points in the Chen-Greenberg limit set $\\Lambda_{CG}(G )$, a closed $G$-invariant subset of $\\partial \\mathbb {H}^n_\\mathbb {C}$, which is minimal for non-elementary groups. We also prove that the action on $Eq(G)$ is discontinuous.", "revisions": [ { "version": "v1", "updated": "2008-09-09T14:47:46.000Z" } ], "analyses": { "subjects": [ "32Q45", "37F45", "22E40", "57R30" ], "keywords": [ "discrete subgroup", "equicontinuity region", "chen-greenberg limit set", "non-elementary groups", "equicontinuty region" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0809.1546S" } } }