{ "id": "0809.1334", "version": "v4", "published": "2008-09-08T14:09:34.000Z", "updated": "2009-06-02T07:03:18.000Z", "title": "The warping degree of a knot diagram", "authors": [ "Ayaka Shimizu" ], "comment": "12 pages, 9 figures", "categories": [ "math.GT" ], "abstract": "For an oriented knot diagram D, the warping degree d(D) is the smallest number of crossing changes which are needed to obtain the monotone diagram from D in the usual way. We show that d(D) + d(-D) + 1 is less than or equal to the crossing number of D. Moreover the equality holds if and only if D is an alternating diagram.", "revisions": [ { "version": "v4", "updated": "2009-06-02T07:03:18.000Z" } ], "analyses": { "keywords": [ "warping degree", "equality holds", "oriented knot diagram", "monotone diagram", "usual way" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0809.1334S" } } }