{ "id": "0809.1074", "version": "v3", "published": "2008-09-05T16:56:02.000Z", "updated": "2009-11-16T20:06:18.000Z", "title": "Multifractal analysis for multimodal maps", "authors": [ "Mike Todd" ], "comment": "Minor rewrites", "categories": [ "math.DS" ], "abstract": "Given a multimodal interval map $f:I \\to I$ and a H\\\"older potential $\\phi:I \\to \\mathbb{R}$, we study the dimension spectrum for equilibrium states of $\\phi$. The main tool here is inducing schemes, used to overcome the presence of critical points. The key issue is to show that enough points are `seen' by a class of inducing schemes. We also compute the Lyapunov spectrum. We obtain the strongest results when $f$ is a Collet-Eckmann map, but our analysis also holds for maps satisfying much weaker growth conditions.", "revisions": [ { "version": "v3", "updated": "2009-11-16T20:06:18.000Z" } ], "analyses": { "subjects": [ "37E05", "37D25", "37D35", "37C45" ], "keywords": [ "multimodal maps", "multifractal analysis", "multimodal interval map", "inducing schemes", "weaker growth conditions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0809.1074T" } } }