{ "id": "0809.0838", "version": "v1", "published": "2008-09-04T15:32:39.000Z", "updated": "2008-09-04T15:32:39.000Z", "title": "Cohomology of quantum groups: An analog of Kostant's Theorem", "authors": [ "University of Georgia VIGRE Algebra Group", "Irfan Bagci", "Brian D. Boe", "Leonard Chastkofsky", "Benjamin Connell", "Benjamin Jones", "Wenjing Li", "Daniel K. Nakano", "Kenyon J. Platt", "Jae-Ho Shin", "Caroline B. Wright" ], "comment": "12 pages", "journal": "Proc. Amer. Math. Soc. 138 (2010), 85-99", "doi": "10.1090/S0002-9939-09-10039-4", "categories": [ "math.RT", "math.QA" ], "abstract": "We prove the analog of Kostant's Theorem on Lie algebra cohomology in the context of quantum groups. We prove that Kostant's cohomology formula holds for quantum groups at a generic parameter $q$, recovering an earlier result of Malikov in the case where the underlying semisimple Lie algebra $\\mathfrak{g} = \\mathfrak{sl}(n)$. We also show that Kostant's formula holds when $q$ is specialized to an $\\ell$-th root of unity for odd $\\ell \\ge h-1$ (where $h$ is the Coxeter number of $\\mathfrak{g}$) when the highest weight of the coefficient module lies in the lowest alcove. This can be regarded as an extension of results of Friedlander-Parshall and Polo-Tilouine on the cohomology of Lie algebras of reductive algebraic groups in prime characteristic.", "revisions": [ { "version": "v1", "updated": "2008-09-04T15:32:39.000Z" } ], "analyses": { "subjects": [ "20G42", "17B56" ], "keywords": [ "quantum groups", "kostants theorem", "kostants cohomology formula holds", "coefficient module lies", "underlying semisimple lie algebra" ], "tags": [ "journal article" ], "publication": { "publisher": "AMS", "journal": "Proc. Amer. Math. Soc." }, "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0809.0838U" } } }