{ "id": "0809.0813", "version": "v2", "published": "2008-09-04T13:48:07.000Z", "updated": "2023-01-30T17:20:23.000Z", "title": "Large Deviations of Vector-valued Martingales in 2-Smooth Normed Spaces", "authors": [ "Anatoli Juditsky", "Arkadii S. Nemirovski" ], "categories": [ "math.PR", "math.ST", "stat.TH" ], "abstract": "We derive exponential bounds on probabilities of large deviations for \"light tail\" martingales taking values in finite-dimensional normed spaces. Our primary emphasis is on the case where the bounds are dimension-independent or nearly so. We demonstrate that this is the case when the norm on the space can be approximated, within an absolute constant factor, by a norm which is differentiable on the unit sphere with a Lipschitz continuous gradient. We also present various examples of spaces possessing the latter property.", "revisions": [ { "version": "v1", "updated": "2008-09-04T13:48:07.000Z", "comment": null, "journal": null, "doi": null }, { "version": "v2", "updated": "2023-01-30T17:20:23.000Z" } ], "analyses": { "keywords": [ "large deviations", "vector-valued martingales", "absolute constant factor", "light tail", "primary emphasis" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0809.0813J" } } }