{ "id": "0809.0812", "version": "v1", "published": "2008-09-04T13:40:44.000Z", "updated": "2008-09-04T13:40:44.000Z", "title": "The notion of convexity and concavity on Wiener space", "authors": [ "D. Feyel", "A. S. Üstünel" ], "journal": "Journal of Functional Analysis, Vol. 176, p. 369-400, 2000", "categories": [ "math.PR" ], "abstract": "We define, in the frame of an abstract Wiener space, the notions of convexity and of concavity for the equivalence classes of random variables. As application we show that some important inequalities of the finite dimensional case have their natural counterparts in this setting.", "revisions": [ { "version": "v1", "updated": "2008-09-04T13:40:44.000Z" } ], "analyses": { "subjects": [ "60Hxx" ], "keywords": [ "finite dimensional case", "abstract wiener space", "random variables", "natural counterparts", "equivalence classes" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0809.0812F" } } }