{ "id": "0809.0663", "version": "v2", "published": "2008-09-03T16:22:57.000Z", "updated": "2008-09-15T08:36:38.000Z", "title": "Commutative quotients of finite W-algebras", "authors": [ "Alexander Premet" ], "comment": "35 pages; one subsection added, some typos corrcted", "categories": [ "math.RT", "math.RA" ], "abstract": "Let U(g,e) be the finite W-algebra associated with a nilpotent element e in a simple Lie algebra g and assume that e is induced from a nilpotent element e_0 in a Levi subalgebra l of g. We show that if the finite W-algebra U(l,e_0) has a 1-dimensional representation, then so does U(g,e). For g classical (and in may other cases), we compute the Krull dimension of the largest commutative quotient of U(g,e). Some applications to representation theory of modular counterparts of g are given.", "revisions": [ { "version": "v2", "updated": "2008-09-15T08:36:38.000Z" } ], "analyses": { "subjects": [ "17B45", "17B35" ], "keywords": [ "finite w-algebra", "nilpotent element", "simple lie algebra", "representation theory", "levi subalgebra" ], "note": { "typesetting": "TeX", "pages": 35, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0809.0663P" } } }