{ "id": "0809.0379", "version": "v3", "published": "2008-09-02T12:26:05.000Z", "updated": "2010-04-13T16:18:06.000Z", "title": "Multipliers of periodic orbits in spaces of rational maps", "authors": [ "Genadi Levin" ], "comment": "Final version. To appear in ETDS", "categories": [ "math.DS", "math.CV" ], "abstract": "Given a polynomial or a rational map f we associate to it a space of maps. We introduce local coordinates in this space, which are essentially the set of critical values of the map. Then we consider an arbitrary periodic orbit of f with multiplier \\rho\\not=1 as a function of the local coordinates, and establish a simple connection between the dynamical plane of f and the function \\rho in the space associated to f. The proof is based on the theory of quasiconformal deformations of rational maps. As a corollary, we show that multipliers of non-repelling periodic orbits are also local coordinates in the space.", "revisions": [ { "version": "v3", "updated": "2010-04-13T16:18:06.000Z" } ], "analyses": { "subjects": [ "37F10", "37C30", "37F45", "30D05" ], "keywords": [ "rational map", "multiplier", "local coordinates", "arbitrary periodic orbit", "non-repelling periodic orbits" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0809.0379L" } } }