{ "id": "0809.0215", "version": "v1", "published": "2008-09-01T11:59:18.000Z", "updated": "2008-09-01T11:59:18.000Z", "title": "A necessary and sufficient condition for the invertibility of adapted perturbations of identity on the Wiener space", "authors": [ "Ali Süleyman Üstünel" ], "journal": "Comptes Rendus Mathematiques, Vol. 346, 2008", "categories": [ "math.PR", "math.FA" ], "abstract": "Let $(W,H,\\mu)$ be the classical Wiener space, assume that $U=I_W+u$ is an adapted perturbation of identity satisfying the Girsanov identity. Then, $U$ is invertible if and only if the kinetic energy of $u$ is equal to the relative entropy of the measure induced with the action of $U$ on the Wiener measure $\\mu$, in other words $U$ is invertible if and only if $$ \\half \\int_W|u|_H^2d\\mu=\\int_W \\frac{dU\\mu}{d\\mu}\\log\\frac{dU\\mu}{d\\mu}d\\mu . $$", "revisions": [ { "version": "v1", "updated": "2008-09-01T11:59:18.000Z" } ], "analyses": { "subjects": [ "60Hxx" ], "keywords": [ "adapted perturbation", "sufficient condition", "invertibility", "classical wiener space", "girsanov identity" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0809.0215S" } } }