{ "id": "0809.0150", "version": "v1", "published": "2008-08-31T20:24:37.000Z", "updated": "2008-08-31T20:24:37.000Z", "title": "Asymptotic behaviour of self-contracted planar curves and gradient orbits of convex functions", "authors": [ "Aris Daniilidis", "Olivier Ley", "Stéphane Sabourau" ], "journal": "Journal de Math\\'ematiques Pures et Appliqu\\'es 94 (2010) 183-199", "doi": "10.1016/j.matpur.2010.03.007", "categories": [ "math.DS", "math.OC" ], "abstract": "We hereby introduce and study the notion of self-contracted curves, which encompasses orbits of gradient systems of convex and quasiconvex functions. Our main result shows that bounded self-contracted planar curves have a finite length. We also give an example of a convex function defined in the plane whose gradient orbits spiral infinitely many times around the unique minimum of the function.", "revisions": [ { "version": "v1", "updated": "2008-08-31T20:24:37.000Z" } ], "analyses": { "subjects": [ "37C10", "34D20", "37B35", "37N40", "52A10" ], "keywords": [ "asymptotic behaviour", "main result", "bounded self-contracted planar curves", "finite length", "gradient systems" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0809.0150D" } } }