{ "id": "0809.0076", "version": "v1", "published": "2008-08-30T17:09:12.000Z", "updated": "2008-08-30T17:09:12.000Z", "title": "Matrices related to Dirichlet series", "authors": [ "David A. Cardon" ], "comment": "17 pages", "categories": [ "math.NT" ], "abstract": "We attach a certain $n \\times n$ matrix $A_n$ to the Dirichlet series $L(s)=\\sum_{k=1}^{\\infty}a_k k^{-s}$. We study the determinant, characteristic polynomial, eigenvalues, and eigenvectors of these matrices. The determinant of $A_n$ can be understood as a weighted sum of the first $n$ coefficients of the Dirichlet series $L(s)^{-1}$. We give an interpretation of the partial sum of a Dirichlet series as a product of eigenvalues. In a special case, the determinant of $A_n$ is the sum of the M\\\"obius function. We disprove a conjecture of Barrett and Jarvis regarding the eigenvalues of $A_n$.", "revisions": [ { "version": "v1", "updated": "2008-08-30T17:09:12.000Z" } ], "analyses": { "keywords": [ "dirichlet series", "determinant", "eigenvalues", "special case" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0809.0076C" } } }