{ "id": "0808.3458", "version": "v2", "published": "2008-08-26T09:00:10.000Z", "updated": "2008-08-29T13:24:51.000Z", "title": "A central limit theorem for the rescaled Lévy area of two-dimensional fractional Brownian motion with Hurst index $H<1/4$", "authors": [ "Jeremie Unterberger" ], "comment": "70 pages, 1 figure", "categories": [ "math.PR" ], "abstract": "Let $B=(B^{(1)},B^{(2)})$ be a two-dimensional fractional Brownian motion with Hurst index $\\alpha\\in (0,1/4)$. Using an analytic approximation $B(\\eta)$ of $B$ introduced in \\cite{Unt08}, we prove that the rescaled L\\'evy area process $(s,t)\\to \\eta^{\\half(1-4\\alpha)}\\int_s^t dB_{t_1}^{(1)}(\\eta) \\int_s^{t_1} dB_{t_2}^{(2)}(\\eta)$ converges in law to $W_t-W_s$ where $W$ is a Brownian motion independent from $B$. The method relies on a very general scheme of analysis of singularities of analytic functions, applied to the moments of finite-dimensional distributions of the L\\'evy area.", "revisions": [ { "version": "v2", "updated": "2008-08-29T13:24:51.000Z" } ], "analyses": { "subjects": [ "60F05", "60G15", "60G18", "60H05" ], "keywords": [ "two-dimensional fractional brownian motion", "central limit theorem", "rescaled lévy area", "hurst index", "levy area" ], "note": { "typesetting": "TeX", "pages": 70, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0808.3458U" } } }