{ "id": "0808.3143", "version": "v2", "published": "2008-08-22T20:27:01.000Z", "updated": "2009-02-25T14:11:37.000Z", "title": "Multiple solutions for the $p-$laplace operator with critical growth", "authors": [ "Pablo L. De Nápoli", "Julián Fernández Bonder", "Analía Silva" ], "comment": "Results improved, hypotheses removed", "journal": "Nonlinear Anal. TMA., 71 (2009), 6283--6289.", "doi": "10.1016/j.na.2009.06.036", "categories": [ "math.AP" ], "abstract": "In this note we show the existence of at least three nontrivial solutions to the following quasilinear elliptic equation $-\\Delta_p u = |u|^{p^*-2}u + \\lambda f(x,u)$ in a smooth bounded domain $\\Omega$ of $\\R^N$ with homogeneous Dirichlet boundary conditions on $\\partial\\Omega$, where $p^*=Np/(N-p)$ is the critical Sobolev exponent and $\\Delta_p u =div(|\\nabla u|^{p-2}\\nabla u)$ is the $p-$laplacian. The proof is based on variational arguments and the classical concentrated compactness method.", "revisions": [ { "version": "v2", "updated": "2009-02-25T14:11:37.000Z" } ], "analyses": { "subjects": [ "35J60", "35J20" ], "keywords": [ "multiple solutions", "laplace operator", "critical growth", "quasilinear elliptic equation", "homogeneous dirichlet boundary conditions" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0808.3143D" } } }