{ "id": "0808.3051", "version": "v1", "published": "2008-08-22T09:56:30.000Z", "updated": "2008-08-22T09:56:30.000Z", "title": "Global well-posedness of incompressible flow in porous media with critical diffusion in Besov spaces", "authors": [ "Baoquan Yuan", "Jia Yuan" ], "comment": "18 pages", "categories": [ "math.AP" ], "abstract": "In this paper we study the model of heat transfer in a porous medium with a critical diffusion. We obtain global existence and uniqueness of solutions to the equations of heat transfer of incompressible fluid in Besov spaces $\\dot B^{3/p}_{p,1}(\\mathbb{R}^3)$ with $1\\le p\\le\\infty$ by the method of modulus of continuity and Fourier localization technique.", "revisions": [ { "version": "v1", "updated": "2008-08-22T09:56:30.000Z" } ], "analyses": { "subjects": [ "76S05", "76D03" ], "keywords": [ "besov spaces", "porous medium", "critical diffusion", "global well-posedness", "incompressible flow" ], "tags": [ "journal article" ], "publication": { "doi": "10.1016/j.jde.2009.01.022", "journal": "Journal of Differential Equations", "year": 2009, "volume": 246, "number": 11, "pages": 4405 }, "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009JDE...246.4405Y" } } }