{ "id": "0808.2037", "version": "v1", "published": "2008-08-14T17:48:14.000Z", "updated": "2008-08-14T17:48:14.000Z", "title": "Weak* continuous states on Banach algebras", "authors": [ "Bojan Magajna" ], "comment": "5 pages", "categories": [ "math.FA" ], "abstract": "We prove that if a unital Banach algebra $A$ is the dual of a Banach space $\\pd{A}$, then the set of weak* continuous states is weak* dense in the set of all states on $A$. Further, weak* continuous states linearly span $\\pd{A}$.", "revisions": [ { "version": "v1", "updated": "2008-08-14T17:48:14.000Z" } ], "analyses": { "subjects": [ "46H05", "46B10", "47B44" ], "keywords": [ "unital banach algebra", "banach space", "continuous states linearly span" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable" } } }