{ "id": "0808.1463", "version": "v1", "published": "2008-08-11T08:22:55.000Z", "updated": "2008-08-11T08:22:55.000Z", "title": "A family of Koszul algebras arising from finite-dimensional representations of simple Lie algebras", "authors": [ "Vyjayanthi Chari", "Jacob Greenstein" ], "comment": "25 pages", "journal": "Adv. Math. 220 (2009), no. 4, 1193-1221", "doi": "10.1016/j.aim.2008.11.007", "categories": [ "math.RT", "math.QA", "math.RA" ], "abstract": "Let $\\lie g$ be a simple Lie algebra and let $\\bs^{\\lie g}$ be the locally finite part of the algebra of invariants $(_\\bc\\bv\\otimes S(\\lie g))^{\\lie g}$ where $\\bv$ is the direct sum of all simple finite-dimensional modules for $\\lie g$ and $S(\\lie g)$ is the symmetric algebra of $\\lie g$. Given an integral weight $\\xi$, let $\\Psi=\\Psi(\\xi)$ be the subset of roots which have maximal scalar product with $\\xi$. Given a dominant integral weight $\\lambda$ and $\\xi$ such that $\\Psi$ is a subset of the positive roots we construct a finite-dimensional subalgebra $\\bs^{\\lie g}_\\Psi(\\le_\\Psi\\lambda)$ of $\\bs^{\\lie g}$ and prove that the algebra is Koszul of global dimension at most the cardinality of $\\Psi$. Using this we then construct naturally an infinite-dimensional Koszul algebra of global dimension equal to the cardinality of $\\Psi$. The results and the methods are motivated by the study of the category of finite-dimensional representations of the affine and quantum affine algebras.", "revisions": [ { "version": "v1", "updated": "2008-08-11T08:22:55.000Z" } ], "analyses": { "subjects": [ "17B10", "17B70", "16W50" ], "keywords": [ "simple lie algebra", "finite-dimensional representations", "koszul algebras arising", "simple finite-dimensional modules", "infinite-dimensional koszul algebra" ], "tags": [ "journal article" ], "publication": { "publisher": "Elsevier", "journal": "Adv. Math." }, "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0808.1463C" } } }