{ "id": "0808.1146", "version": "v2", "published": "2008-08-08T01:28:59.000Z", "updated": "2008-12-30T19:41:57.000Z", "title": "Biflatness and biprojectivity of the Fourier algebra", "authors": [ "Volker Runde" ], "comment": "6 pages; a few typos fixed", "journal": "Arch. Math. (Basel) 92 (2009), 525-530", "categories": [ "math.FA" ], "abstract": "We show that the biflatness - in the sense of A. Ya. Helemskii - of the Fourier algebra $A(G)$ of a locally compact group $G$ forces $G$ to either have an abelian subgroup of finite index or to be non-amenable without containing $F_2$, the free group in two generators, as a closed subgroup. An analogous dichotomy is obtained for biprojectivity.", "revisions": [ { "version": "v2", "updated": "2008-12-30T19:41:57.000Z" } ], "analyses": { "subjects": [ "43A30", "22D99", "43A07", "46J40", "46M18" ], "keywords": [ "fourier algebra", "biflatness", "biprojectivity", "free group", "locally compact group" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0808.1146R" } } }