{ "id": "0808.0762", "version": "v1", "published": "2008-08-06T02:22:50.000Z", "updated": "2008-08-06T02:22:50.000Z", "title": "On the Convergence of Optimal Measures", "authors": [ "T. Bloom", "L. Bos", "N. Levenberg", "S. Waldron" ], "categories": [ "math.CV", "math.CA" ], "abstract": "Using recent results of Berman and Boucksom we show that for a non-pluripolar compact set K in C^d and an admissible weight function w=e^{-\\phi} any sequence of so-called optimal measures converges weak-* to the equilibrium measure \\mu_{K,\\phi} of (weighted) Pluripotential Theory for K,\\phi.", "revisions": [ { "version": "v1", "updated": "2008-08-06T02:22:50.000Z" } ], "analyses": { "subjects": [ "32U20", "31C10" ], "keywords": [ "convergence", "non-pluripolar compact set", "optimal measures converges", "pluripotential theory", "admissible weight function" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0808.0762B" } } }