{ "id": "0808.0459", "version": "v1", "published": "2008-08-04T16:31:05.000Z", "updated": "2008-08-04T16:31:05.000Z", "title": "On the Danilov-Gizatullin Isomorphism Theorem", "authors": [ "Hubert Flenner", "Shulim Kaliman", "Mikhail Zaidenberg" ], "comment": "6 pages", "categories": [ "math.AG" ], "abstract": "A Danilov-Gizatullin surface is a normal affine surface V, which is a complement to an ample section S in a Hirzebruch surface of index d. By a surprising result due to Danilov and Gizatullin, V depends only on the self-intersection number of S and neither on d nor on S. In this note we provide a new and simple proof of this Isomorphism Theorem.", "revisions": [ { "version": "v1", "updated": "2008-08-04T16:31:05.000Z" } ], "analyses": { "subjects": [ "14R05", "14R20" ], "keywords": [ "danilov-gizatullin isomorphism theorem", "normal affine surface", "simple proof", "ample section", "danilov-gizatullin surface" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0808.0459F" } } }