{ "id": "0808.0368", "version": "v2", "published": "2008-08-04T01:03:41.000Z", "updated": "2009-08-06T00:12:05.000Z", "title": "Global regularity of wave maps V. Large data local wellposedness and perturbation theory in the energy class", "authors": [ "Terence Tao" ], "comment": "73 pages, no figures. Will not be published in current form, pending future reorganisation of the heatwave project", "categories": [ "math.AP" ], "abstract": "Using the harmonic map heat flow and the function spaces of Tataru and the author, we establish a large data local well-posedness result in the energy class for wave maps from two-dimensional Minkowski space $\\R^{1+2}$ to hyperbolic spaces $\\H^m$. This is one of the five claims required in an earlier paper in this series to prove global regularity for such wave maps.", "revisions": [ { "version": "v2", "updated": "2009-08-06T00:12:05.000Z" } ], "analyses": { "subjects": [ "35L70" ], "keywords": [ "large data local wellposedness", "wave maps", "global regularity", "energy class", "perturbation theory" ], "note": { "typesetting": "TeX", "pages": 73, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0808.0368T" } } }